Complexity of Contemporary Buildings

BuildingGreen.com offers a course on achieving enduring value through better use of building science. From their announcement:

"Whether newly built or retrofitted, high-performance buildings begin with envelopes that involve increased thermal demands, greater assembly complexity, and wider material choices.
To meet these challenges, architects and builders must get the building enclosure details right the first time, starting with the earliest stages of schematic design and continuing during construction and during occupancy."

He has it almost correct. The folks that lived in the 100 year old house didn't expect to be able to walk around barefoot in the middle of winter, or to stay cool and refreshed in the summer's heat. 

Still, I am overwhelmed by the amount of information in the syllabus:

COURSE OUTLINE

Unit 1: The Science of High-Performance Assemblies

Hygrothermal Performance: The Key Driver
How water moves through buildings
Continuous water barriers
Capillary breaks
Drained and rainscreen systems: Managing bulk water, capillary water, and drying
Continuous air barriers
How Blower-Door Tests Measure Airtightness
Continuous thermal barriers
Understanding thermal bridging
Reducing Heat Flow Through Windows
Vapor profiles vs vapor retarders
How "smart" vapor retarders work
Combining control layers
Using WUFI to prevent moisture problems
Vented and ventilated wall assemblies
"Vented" crawl space foundations
Vented and unvented attics and roofs

Unit 2: Getting Details Right

Residential and Commercial High Performance Assembly Examples
The Special Challenges of Curtainwall
"Perfect" Assemblies
Alternative Assemblies
Joints: Sealants, Tapes and Gaskets
Options:
Adhesives
Sealants
Putties and caulks
Agreeing on terms, and applications
Avoiding failed seals with bond breaks
How to choose a sealant that works
Latex
Acrylic
Butyl
Polysulfide
Silicone
Polyurethane
"Hybrids"–MS Polymers
Making tapes stay put
Rubberized asphalt
Butyl rubber
Acrylic
Silicone
Tape performance: Other considerations
Assessing service life
Gaskets
Compression and memory
Wet versus dry glazing
Service life of gaskets
Assessing product safety
Liquid Sealants and Chemical Safety
Flashing Tapes and Chemical Safety
Gaskets and Chemical Safety
Case Study: Cape Cod Passive House

Unit 3: High-Performance Design and Construction Process

How high performance Scopes Of Work differ from standard SOW
Verifying Performance with Building Envelope Commissioning
Cx vs. BECx
Pre-design phase
Design phase
Achieving continuity
Construction Phase
Mockups
During construction
Pre-occupancy
What gets tested
Occupancy and operations
Guidelines and standards
HOBO data loggers
Integrated High Performance HVAC
Case Study: Wisconsin Institutes for Discovery

Unit 4: High-Performance Retrofits

Assessment
Evaluation
Monitoring
Getting to know the building
Case Study: Renovation of 46 Blackstone
Historic masonry in cold climates
Reduce airflow, encourage vapor flow
Ongoing monitoring
Case Study: Edminster-Bohner Home Retrofit
The damp crawl space
Ongoing monitoring
Design Review: Existing and Planned Elements
Design Review Drawings: Edminster-Bohner Home Retrofit
Comprehensive Home Assessment Checklist