10 Trends To Watch - part 1 of 4

Developing systems and methods are shaping the future of construction.


Chusid Associates endeavors to identify trends that will shape our client's future business.  We have observed a number of recent developments worth watching, and we present them here, with products emblematic of those trends. Some are still in early phases of laboratory development; others have been lurking in the periphery of construction and are now poised to leap, fully grown, onto the architectural stage. What they have in common is that they challenge our thinking and help us anticipate construction's future.

We present 10 trends in a special, 4-part post.  Watch for parts 2, 3, and 4 over the next 2 weeks.


1) Lighting Beyond LED
After a long gestation period, light emitting diodes (LED) have finally become commercially viable. Yet, even before they have risen to their full potential, the next wave of illumination sources is on the horizon. Particularly significant are a trio of new technologies for producing very thin, flexible sheets of illuminating material. Unlike LED panels that are made up of hundreds of point light sources ganged together, the new technologies provide even illumination output over their entire surface.

Organic light emitting diodes (OLED) are already seen in flat TV screens, monitors and smart phones, and several companies are racing to turn them on in the lighting market. (oled-display.net/oled-lighting/) Light emitting capacitors (LEC), developed by Ceelite Technologies (ceelite.com), are being used in back-illuminated signs to create thin fixtures with even light distribution. And quantum dot light emitting diodes (QLED), developed by QD Vision (qdvision.com), are crystalline semiconductors that can be tuned to emit very pure colors of light.
Rapid progress is being made towards improving longevity, improving efficacy, and larger sheet sizes. Costs should decrease once these light sources are produced on high-speed "printers," as currently proposed.

 Their flexibility and thinness suggest new ways to design with light: Creative new forms for luminaires. Walls and ceilings liberated from the need to use surface-mounted or recessed luminaires. Glass that is transparent by day and light emitting at night. Cabinet shelves that illuminate their content. Doors with illuminated faces to aid emergency egress.
OLEDs used a window blinds
GE proposes that thin, flexible OLEDs can be used as window blinds.

Recommendation: Look for innovative ways to incorporate lighting into your products


2. Robots Rising
Robots are already in use in building product manufacturing. For example, Boral Brick uses robots to stack green brick for kilning, and to pack finished brick for shipping as palletless, minimally-packaged cubes. The news is that robots are moving into the field. For example, robots are being used to lay bricks in elaborate patterns that would be quite labor intensive to do manually.  (For example, see treehugger.com)


Theometrics has a fleet of mobile robots that measure a building interior in three dimensions, capturing more data points than would be affordable with manual surveying, and automatically generating a model of the structure. Equipped with a marker, it will mark the layout of conduit, partitions and other work. Equipped with a drill, it will assemble components.

The pace of robotic research is quickening. Southern California Institute of Architecture's robot lab, for example is exploring "freeform additive" fabrication and onsite construction in "unprecedented emulation, simulation and animation environments in which computational geometry, material agency and fabrication logistics merge." 
Robots at SCIARC Lab.
Large industrial robots configured in a multi-robot work cell are exploring the future of robotic construction.
Recommendation: Robotics will change the ecology of construction.  How will you evolve to survive?